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One of the important features of human locomotion is its instant adaptability to various unpredictable
changes of physical and environmental conditions. This property is known as flexibility. Modeling the bipedal
locomotion system, we show that initial-state coordination by a global variable which encodes the attractor
basins of the system can yield flexibility. This model is based on the following hypotheses: �i� the walking
velocity is a global variable, and �ii� the leg posture at the beginning of the stance phase is the initial state of
the gait. Moreover, we confirm these hypotheses. We investigate the regions near the neutral states between
walking and falling phases using numerical experiments and demonstrate that global variables can be defined
as the dominant unstable directions of the system dynamics near the neutral states. We propose the concept of
an “instability-induced hierarchy.” In this hierarchy, global variables govern other variables near neutral states;
i.e., they become elements of a higher level.
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I. INTRODUCTION

An important feature of human locomotion is its instant
adaptability to unpredictable changes of various conditions
affecting locomotion. Indeed, walking is robust to not only
environmental changes �e.g., wind�, but also physical
changes �e.g., impairment due to injury�. If anything, these
perturbations result in a modified walking pattern, although
such changes can sometimes be dramatic. The mechanisms
underlying such flexible control are of interest to scholars in
neuroscience, biomechanics, and physical sciences �1–3�.
This study is directed toward gaining a theoretical under-
standing of the mechanisms of flexible locomotor control in
the presence of various condition changes.

Modeling studies of bipedal locomotion �4,3� based on
neurophysiological evidence have shown that a basic walk-
ing gait is generated through mutual entrainment between
oscillations of a central pattern generator �CPG� �5� and the
body itself. A human locomotor CPG has been identified in
the spinal cord �6,7�. A walking pattern is formed as a limit
cycle in phase space, and the robustness of walking patterns
can be attributed to the stability of the corresponding limit
cycle. It is reasonable to suppose that the formation of walk-
ing patterns in a flexible manner can be facilitated by the
flexibility of the limit-cycle attractor to changes.

Theoretical studies of dynamical systems �8–10� have
demonstrated that in the neighborhood of the neutral state
�the unstable region between stationary and periodic solu-
tions�, even a slight difference in the way the system ap-
proaches the neutral state can separate the system to con-
verge to quite different behaviors. Modeling based studies of
human gait generation �11,12� have suggested that the neu-
tral state is latent in the walking system—i.e., in the coupled
system composed of the CPG and the body—and can surface

as the leg posture at the beginning of the stance phase �BSP�
according to perturbations. From a biomechanical perspec-
tive, as shown in Fig. 1, the joint angle of the hip, �h, and
knee, �k, at the BSP can make neutral states surface states
and determine the subsequent behavior of the system. In-
deed, neurophysiological experiments on animal locomotion
show that walking overcomes perturbations through modula-
tion of the leg posture at the BSP �13–18�.

The initial state is one of the constraints because it deter-
mines the time evolution of the system. Since the leg posture
at the BSP determines the subsequent behavior of the walk-
ing system—i.e., whether the system continues to walk or
not—it may be natural to describe it as the initial state. Thus,
from the viewpoint of neurophysiology and dynamical sys-
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FIG. 1. A biomechanical view of bipedal walking. The leg pos-
ture is determined by the hip and knee joint angles—i.e., �h and �k.
The behavior of the walking system is separated into three states:
forward fallen, walking, and backward fallen. The neutral states
exist between the two adjacent states—i.e., between the forward
fallen and walking states and between the walking and the back-
ward fallen states. Depending on perturbations, the neutral state can
surface as the leg posture—i.e., �h and �k. The two neutral states
separate the behavior of the system into the forward fallen and
walking states and the walking and backward fallen states.
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tems theory, posture modulation at the BSP is crucial for
maintenance of walking.

Modeling studies �11,12� have predicted that initial-state
coordination can reproduce adaptive pattern formation for
walking. However, in their models, adaptability to any per-
turbations is low because only the knee joint angle �k was
coordinated as the initial state. Moreover, above all, only
adaptability specific to each perturbation can be reproduced
because the initial-state coordination is formulated according
to the perturbation.

In this article, we emphasize that flexibility can be estab-
lished by governing the initial state with the whole state of
the system. Undoubtedly, any perturbation such as a change
in the body or an external force is reflected in the whole state
of the walking system. Therefore, if the equation of the
initial-state coordination is given appropriately, as a function
of the variable coding the whole state, such a model will
adapt to changes in various conditions. From a mathematical
viewpoint, coding the whole state is equivalent to coding the
attractor basins of the system. We regard a variable which
can encode the attractor basins of the walking system as a
global variable.

In Sec. II, we propose a model as an extended version of
the models �11,12� by adding modulation of the hip joint
angle �h to the initial-state coordination. In Sec. III, hypoth-
eses �i� and �ii� below are demonstrated through numerical
experiments in the neighborhood of the neutral states �just
before the BSP�.

�i� There exists a global variable in bipedal walking sys-
tems.

�ii� The posture at the BSP is the initial state.
Based on numerical experiments, we formulate the equa-

tions of initial-state coordination by a global variable in Sec.
IV. Since this model is described by only the variables of the
system, adaptability to various perturbations may be ob-
tained autonomously regardless of the kind of perturbation,
without specific control for each perturbation. In Sec. V, we
demonstrate that a global-variable-coordinated initial state
establishes flexibility. Since the global variable representing
the behavior of the whole system governs the other variables
expressing the behavior of the body parts, the global variable
is on a different hierarchical level from other variables. This
coordination demonstrates the interaction between two hier-
archical levels. Flexibility, which is an essential characteris-
tic of biological creatures, is thus yielded by such a hierar-
chy. We also propose a concept of hierarchy called
instability-induced hierarchy, and it can be defined only in
the neighborhood of the neutral states as global dominance in
a system. This hierarchy is different from a master-slave re-
lationship, such as the slaving principle �19�, in which domi-
nant variables govern a system also in stable states.

II. MODEL

We use a simple neurobody walking system to demon-
strate the hypotheses proposed in Sec. I. The walking model
should also provide the framework to design a model of
flexible locomotor control. The structure of the model em-
ployed is basically the same as that presented in �12�, but the

model differs in the following respect. The leg posture at-
tribute is extended to include the angle of the hip joint in
addition to the angle of the knee joint. We consider that these
two �hip and knee� joints are important to form adaptive
walking patterns.

The model was constructed simply from a theoretical per-
spective by adding only the posture controller �PC� to the
coupled system composed of a CPG and a body. The model
thus consists of the body and a neural system composed of a
CPG and a PC, as shown in Fig. 2.

The body consists of an interconnected chain of five rigid
links in the sagittal plane, as shown in Fig. 2. The motion of
the body is represented by differential equations of a vector
x= �x1 , . . . ,x6� describing five links �cf. Fig. 2�—i.e., the
mass point position of one link and inertial angles for four
links. �x1 ,x2� represents the position of the hip joint, x3 and
x4 �x5 and x6� represent the angles of the left �right� shank
and thigh with respect to the vertical, respectively. The equa-
tions are expressed according to the Newton-Euler method.

The CPG and PC are composed of 12 �from the 1st to the
12th neurons� and 4 neurons �from the 13th to the 16th neu-
rons�, respectively. The essential function of each neuron is
to cause an action potential over a particular interval in each
phase. The interval of the action potential is determined by
the frequency of the corresponding neuron. The phase at
which the action potential of a neuron occurs is determined
by the connectivity of the neural system.

The neural system has both excitatory and inhibitory con-
nections. The excitatory and inhibitory connections between
the neurons can make the relative phase of neuronal activity
synchronous or opposite, respectively. Each neuron in the
CPG and PC induces a torque at a specific joint and an
angle-modulating torque at the hip and knee joints, respec-
tively. The equations describing the neural system are written
in Appendix A.

The coupled system composed of the CPG and body gen-
erates a basic gait. To modify the basic gait, the PC modu-
lates the leg posture around the BSP which is determined by
the hip and knee joint angles. This modulation is executed by
assigning the equilibrium angles �h and �k to the hip and
knee joints, respectively, while the neuron of the posture
controller is firing. The hip PC neurons u13 and u14 govern
the modulation of the angles of the hip joints in the left and
right legs, respectively. The knee PC neurons u15 and u16
govern the modulation of the knee joint angles of the left and
right legs, respectively. Being entrained by the CPG activity,
each hip PC neuron outputs its action potential in the swing
phase. Each knee PC neuron outputs its action potential
around each BSP �12� �see the last paragraph in this section�.
The equilibrium angles produce the following posture modu-
lating torques at the hip joint �TBSPlh ,TBSPrh� and the knee
joint �TBSPlk ,TBSPrk�: i.e., TBSP= �TBSPlh ,TBSPlk ,TBSPrh ,
TBSPrk�. They are defined as follows:

TBSPlh = fm„Tlh − �hf�u13�;�h… ,

TBSPrh = fm„Trh − �hf�u14�;�h… ,

TBSPlk = fm„Tlk − �kf�u15�;�k… ,
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TBSPrk = fm„Trk − �kf�u16�;�k… ,

Tlh = g�u13�f�x3 − x5 − �h��ph1�x3 − x5 − �h� − ph2�ẋ3 − ẋ5�� ,

Trh = g�u14�f�x5 − x3 − �h��ph1�x5 − x3 − �h� − ph2�ẋ5 − ẋ3�� ,

Tlk = g�u15�f�x3 − x4 − �k��pk1�x3 − x4 − �k� − pk2�ẋ3 − ẋ4�� ,

Trk = g�u16�f�x5 − x6 − �k��pk1�x5 − x6 − �k� − pk2�ẋ5 − ẋ6�� ,

f�u� = max�0,u� ,

fm�z;�� = �� for z � � ,

z for �z� � � ,

− � for z � − � ,
�

g�z� = �0 for z � 0,

1 otherwise,
	 �1�

where x3−x5 and x5−x3 represent the angle of the left and
right hip joints, respectively; x3−x4 and x5−x6 represent the
angle of the left and right knee joints, respectively; �h, �k,
�h, �k, �, ph1, ph2, pk1, and pk2 are constant coefficients.
Since −�hf�u13�, −�hf�u14�, −�kf�u15�, and −�kf�u16� func-
tion antagonistically with respect to Tlh, Trh, Tkh, and Tkr,
respectively, the joint angles are forced to approach the equi-
librium angles during PC neuron firing. fm�z ;�� is a function
which restricts the torque amplitude to a realistic level �20�
necessary to maintain a walking movement. The function
fm�z ;�� may be realized through the coactivation of the ago-
nists and antagonists at the joint.

The PC receives the sensory signal encoding the output of
the CPG and governs the leg posture around the BSP.
Purkinje cells in the cerebellum also receive proprioceptive
sensory signals and outputs from the CPG �21,22�. Purkinje
cells in the cerebellum strongly participate in the moderation
of the leg posture at the BSP. Neurophysiological experi-
ments on animal locomotion �15� show that the groups of
Purkinje cells which affect parts of the limb exist in lobule V
of the paravermal part of the cerebellum. The activities of the
Purkinje cell groups affecting the proximal part and the
elbow-related part peak in the swing phase and around the
BSP of the limb, respectively. Based on this knowledge, the
hip and knee PC neurons in our model were designed to
produce their action potentials in the swing phase and around
the BSP, respectively �Fig. 3�. Such a phase relationship in
the firing of the PC neurons realizes an effective modulation
of the leg posture in computer simulations.

Given an appropriate initial condition, the proposed
model �1� generates a walking behavior, which approaches a
quasiperiodic orbit. Figure 3 demonstrates an example walk-
ing trajectory of the system; the profile of the walking veloc-
ity ẋ1 which is the velocity of the hip joint position on the
horizontal axis, the thigh angle x3, the knee joint angle x3
−x4, and firing pattern of u13 and u15 are shown. The walking
velocity fluctuates between 0.9 and 1.4 m/s within one pe-
riod, and it reaches the maximum value at the BSP and the
minimum value near the midpoints between the BSPs. The
knee joint angle peaks to 0.8 rad near the midpoints of the
swing phase and reaches the minimum value 0 rad near the
BSP. The thigh angle x3 peaks at a little before the BSPs and
reaches the minimum value near the midpoints between the
BSP. These agree with data shown in biomechanical studies
�23,24�. The motion range of the thigh angle x3 is approxi-
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FIG. 2. The walking model
consists of the posture controller
�PC; neurons 13–16� and a
coupled system composed of the
central pattern generator �CPG;
neurons 1–12� and the body. �

and � denote excitatory and in-
hibitory connections, respectively.
The motion of the hip, knee, and
ankle joints in the left leg is gov-
erned by neurons 1-2-13, 3-4-15,
and 5-6, respectively. Similarly,
the motion of the joints in the
right leg is governed by neurons
7–12, 14, and 16. Odd-numbered
neurons and even-numbered neu-
rons in the CPG control joint flec-
tion and posture, respectively.
Given the equilibrium angles �h

and �k, the PC modulates the
angles of the hip and knee joints,
respectively, at the BSP.
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mately −0.2–0.7 rad and has a difference of about +0.1 rad
from the biomechanical results.

III. NUMERICAL EXPERIMENTS

The model has three qualitatively different phases—i.e.,
walking, falling forward, and falling backward—according
to appropriate parameters and initial conditions. There exist
neutral states between the falling and walking phases. Con-
trolling the initial conditions, which are specified as the joint
angles in the initial posture �in �see Appendix B 3�, the neu-
tral states can be observed despite the instability of such
states. We first confirm numerically that neutral states are
quasiperiodic solutions and have one dominant unstable di-
rection in the dynamics of the system near the neutral states.
We define global variables as variables with such unstable
directions. The walking velocity is shown to be a global
variable. Indeed, this variable completely represents the
whole state of the system—i.e., which attractor basin the
system is in. Therefore, control of this variable will yield the
governing of the whole state. Next, we investigate how glo-
bal variables can be controlled through the modulation of
other variables—i.e., by posture control at the BSP.

A. Global variables

The second-order equation �A1� can be transformed to a
12-component first-order equation by introducing the vari-

ables zi= ẋi. We ignore x1, since the right sides of �A1� and
P�x� are independent of x1.

We thus focus on the dynamics of the variables of the

body X̃= �x2 , . . . ,x6 ,z1 , . . . ,z6��R11. Note that z1 corre-
sponds to the walking velocity. In the walking regime, solu-
tion orbits seem to approach stable quasiperiodic solutions.
In fact, the maximum velocity occurring during every step of
stable walking only varies within about 1% �Fig. 4�a��.

We demonstrate that the two neutral states are quasiperi-
odic orbits. The joint angle in the initial posture �in is taken
as a bifurcation parameter. When �in is large enough, the
body falls backward. When �in is decreased to
−0.019 321 1	, subsequent walking is observed. As �in is
further decreased to −0.036 954 4	, the body falls forward.
Subsequent walking is thus observed between these transient
points. By carefully tracing the orbital behavior near the
transition points, it was found that the orbit approaches a
quasiperiodic orbit for a while, before the system approaches
a final state. Figure 4 shows the orbital behavior near the
transition point. There are thus two neutral states between
walking and falling, which we denote NF for the region be-
tween walking and falling forward, and NB for that of back-
ward falling.

Since neutral states are unstable, orbits near neutral states
move along unstable manifolds. We show that a one-

dimensional unstable direction exists in X̃ which separates
the final states of orbits at the neutral states for any gait
phase. In order to confirm this direction, we performed care-
ful numerical experiments on the system’s behavior on the
unstable manifold. We observed solution responses to small
perturbations at the neutral states. Although perturbations to
variables in the velocity dimension zi can preserve the re-
stricted conditions of the body structure, perturbations in the
displacement dimension xj break the restrictions by forcing
the leg length to change. Thus, as a perturbation, we imposed
a small extra force

F = �0, . . . ,0,Fk
︸

k

,0, . . . ,0� �k = 1, . . . ,6�

�see Appendix A� to zj for 0.1 ms in each gait phase. As
shown in Fig. 5, the responses to perturbations indicate that
the sign of F1 is coherently responsible for the fate of the
orbit in any gait phase. On the other hand, the response of
the system to perturbations affecting k=2, . . . ,6 changes de-
pending on the gait phase in which the extra force is applied.
Moreover, for Fj �j=2, . . . ,6�, there exist refractory regions
in which the system does not change its response for small
perturbations. These numerical experiments strongly suggest
that z1 determines the final state of the system. It is reason-
able to suppose that the z1 axis corresponds to the dominant

unstable direction in X̃ near the neutral states.
In order to confirm this hypothesis, we performed numeri-

cal experiments in which zi was slightly perturbed for 0.1 ms

by F̃= �F1 , . . . ,F6�. One thousand samples of combinations
of Fj �j=1, . . . ,6� were tested for each gait phase. F1 was
fixed at +0.2 for NB and −0.2 for NF, and Fj �j=2, . . . ,6�
were randomly chosen satisfying 
F2

2+ ¯ +F6
2=0.2 for each
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FIG. 3. The profile of ẋ1 �top�, thigh angle x3 �gray line in
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line at the bottom�, and u15 �dashed line at the bottom�. Vertical
dashed lines indicate the timing of the BSP of the left leg. u13 is
active in the swing phase just before BSP and u15 is active around
the BSP, which accords with neurophysiolosical knowledge �15�.
TBSPlh and TBSPlk are produced only during firing of u13 and u15,
respectively.
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sample. As a result, we found that all of the samples induce
the system to be attracted into the walking state for any gait
phase. This indicates that Fj �j=2, . . . ,6� hardly affect the
final state of the system near the neutral states for any gait
phase. That is, positive and negative perturbations to z1 can
make the system recover its walking near NB and NF, re-
spectively. This means that the z1 axis is almost parallel to
the unstable direction which dominates the dynamics of the
system near the neutral states �Fig. 6�.

We remark that if neutral states are periodic solutions,
then the dominant unstable direction can be confirmed by
solving eigenvalue problems corresponding to the periodic
orbits.

These numerical experiments demonstrate that z1 is a glo-
bal variable which encodes the attractor basins of the walk-
ing system. Critical values Zb and Zf exist for the walking
velocity such that the system belongs to the walking state as
long as z1�Zb near NB and z1�Zf near NF.

B. Posture modulation near neutral states

As demonstrated in the previous subsection, the global
variable z1 encodes the attractor basins. Control of this global

variable will therefore govern the system so that it may be
attracted toward a particular attractor basin. In this subsec-
tion, we investigate appropriate posture modulation control-
ling the global variable z1. The walking system implements
posture modulation around the BSP by giving the equilib-
rium angles �h and �k. The torque of the posture modulation
at the hip and knee joints is active around the BSP, as shown
in Figs. 4�c� and 4�d�. In the neighborhood of NF, Tlh and Tlk
are active simultaneously around the BSP. In the neighbor-
hood of NB, on the other hand, Tlh and Tlk are active simul-
taneously just before the BSP.

We first show that the system can control z1 by modulat-
ing leg posture around the BSP. Figure 7 shows an example.
Modulation of �h just before the BSP allows z1 to be con-
trolled at the BSP. Furthermore, it is shown that controlling
z1 can determine whether or not the system is attracted to the
walking state.

Next, in order to find appropriate posture modulation in
�h−�k space near the neutral states, we add small values
��h and ��k to �h and �k, respectively, during the active
phase of torque modulation at the hip and knee joints. The
values are chosen such that ��h ,�k�= ��̄h+��h , �̄k+��k� for
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FIG. 4. �a� Upper: time series of z1 for a bifurcation parameter near the neutral state NB. Solid and gray lines indicate the motion of z1

when the system is started from the initial conditions �bifurcation parameter� �in=−0.0193211	 and �in=−0.0193212	, respectively. It can
be seen that the orbits approach a quasiperiodic orbit for a while, before the system approaches the stable quasiperiodic orbit �subsequent
walking� for �in=−0.0193212	 �gray line�, but instead enters the falling state for �in=−0.0193211	 �solid line�. �a� Bottom: solid line
indicates the time series of the step cycle where the values 1 and −1 indicate the swing and stance phases, respectively. Vertical dashed lines
indicate the timing of the BSP of the left leg. �b� Time series of z1 for �in=−0.0369544	 �solid line� and �in=−0.0369543	 �gray line�. The
remaining notation is the same as in �a�. �c� upper ��d�, upper�: Magnified views of �a� ��b��. Solid lines indicate the motion of z1 for �in

=−0.0193211	 ��in=−0.0369544	�. Gray and dashed lines indicate joint angle motion in the hip, x3−x5, and knee, x3−x4, respectively. �c�
Bottom ��d�, bottom�: solid line shows the time series of the step cycle. Gray and dashed lines indicate g�u13� and g�u15�—i.e., the activities
of the posture modulating torques at the hip Tlh and knee Tlk, respectively �1 and −1 indicate the active and nonactive phases, respectively�.
Gray rectangles indicate time intervals in which both Tlh and Tlk are active.
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t
 t0, where ��h and ��k are chosen satisfying

���h�2+ ���k�2=���� �0.001,0.01�� and t0 is chosen during
the active phase of torque modulation at the hip and knee
joints. Figure 8 shows the distribution of the system’s final
state induced by a combination of ��h and ��k. The system
can be attracted to the walking state for any gait phase by
taking ���h ,��k� from the upper-left region of Fig. 8�a� near
NB and from the right region of Fig. 8�b� near NF. Further-

more, the distribution does not qualitatively change at
t0—i.e., just before the BSP. This means that the BSP is an
initial state constraining the dynamics of the system.

IV. INTERACTION BETWEEN THE GLOBAL
VARIABLE AND OTHER VARIABLES

We show that initial-state coordination according to the
global variable improves adaptability to various perturba-
tions. As mentioned in Sec. III, z1 is a global variable which
encodes the attractor basins and the posture at the BSP is the
initial state of the system. We thus describe the initial state as
a function of the global variable. We take �h and �k, which
are functions of z1, as substitutes for �k and �k.

The numerical experiments in Sec. III B lead to the design
of equations for adaptive coordination functions determined
as

�h�z1� = �̄h + hf f�z1 − zf� + hbf�zb − z1� , �2a�

�k�z1� = �̄k + kbf�zb − z1� , �2b�

where zb, zf, hf, hb, and kb are constants. In Sec. III, we
found a threshold for the walking velocity. That is, the walk-
ing system belongs to the side of the attractor basins when
z1
Zb near NB and z1�Zf near NF where Zb�0.4 m /s and
Zf �1.5 m /s. When z1�Zb or z1�Zf, �h and �k should be
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FIG. 6. Schematic figure of the system’s phase space. Horizontal
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directions corresponding to the axes of the global variable.
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varied appropriately for subsequent walking as shown in Fig.
8. A function f was used to control �h and �k when z1
approaches Zb or Zf. zb and zf were set to 0.9 and 1.1, re-
spectively. The signs of hb, hf, and kb were determined
from the numerical results in Fig. 8. In this case hb=
−0.03, hf =0.16, and kb=1.0. Although, in previous sec-
tions, �h and �k in Eq. �1� were given as parameters, Eq. �2�
assigns them according to the system variable �z1�. The sys-
tem �2� was thus established as a complete autonomous sys-
tem �Fig. 9�. Hereafter we call this system the global-
variable-coordinated �GVC� system.

Receiving the sensory signal coding for the walking ve-
locity and the outputs from the CPG, the PC governs the leg
posture around the BSP. In humans, the walking velocity
could be observed by the visual cortex or through sensing the
movement of the location of the peak of pressure on the foot
using mechanoreceptors on the foot sole. It is known neuro-
physiologically that the cerebellum receives information
from the visual cortex. Purkinje cells in the cerebellum also
receive proprioceptive sensory signals and outputs from the
CPG �21,22�. Purkinje cells in the cerebellum strongly par-
ticipate in the moderate posture of the legs at the BSP. As
also mentioned in Sec. II, the PC presented here may corre-
spond to Purkinje cells in lobules IV and V of the paravermal
part and the vermal zones of the cerebellum.

V. SIMULATION AND RESULTS

Using the proposed model as presented in Sec. IV �Fig.
9�, the adaptability of initial-state coordination according to a

global variable should be tested. Without initial-state coordi-
nation by the global variable—i.e., when the equilibrium
angles of the hip and knee joints at the BSP are set to mod-
erate fixed values—the system �1� generates a particular
walking pattern. This walking pattern is similar to that gen-
erated by the model without the PC �11,12�. We call the
walking movement without initial-state coordination by a
global variable �hf =hb=kb=0 or the model �1�� simple
walking. The effectiveness of initial-state coordination
should be demonstrated in comparison with the adaptive
range of simple walking �Sec. III�. We tested the adaptive
range of the GVC system by applying various strong pertur-
bations, while assigning fixed values to each of the equation
parameters. Hereafter, we take �in= –0.03	 rad.

A. Adaptability to external forces

The GVC system was tested in the case that an unpredict-
able and temporary external force is applied. It was assumed
that an external force takes effect on the hip in the horizontal
direction over a 0.1-s interval during walking. This perturba-
tion may, for example, correspond to collision with an on-
coming human.

The maximum force that may be applied to the walking
system depends on the gait phase at which the perturbation is
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applied �25�. Figure 10�a� shows the maximum force that
may be applied to the GVC system and to the simple walking
model as a function of the gait phase corresponding to the
moment the external force was applied. The gait phase is
measured from the BSP of the left leg �it is 0 at the BSP of
the left leg�. Positive and negative forces indicate forward
and backward forces, respectively. The GVC system could
overcome forces greater than 400 N in any gait phase. Fig-
ures 10�b� and 10�c� show stick figures representing the
walking patterns of the simple model and the GVC system
when a forward force of 400 N was applied at gait phase
3	 /4. Figure 10�d� shows a time series of the walking ve-
locity z1 and the hip and knee joint angles on one side during
the walking movement shown in Fig. 10�c�. The modulation
of the hip and knee joint angle at the BSP depends on the
walking velocity z1; i.e., initial-state coordination enabled the
walking system to adapt to large temporary forces.

The next test of the model involved the case when an
external force is applied continuously. It was assumed that an
external force has a continuous effect with a constant
strength on the hip in the horizontal direction during walk-
ing. This may resemble the situation when a walking human
is buffeted by a gust of wind—e.g., when cities are visited by
a typhoon or a hurricane. Although the range of such forces
that can be applied to simple walking is from −17 N �back-
ward force� to 42 N �forward force�, the GVC system con-
siderably extends this range to −40 N �backward force� and
107 N �forward force�. Figures 11�a�–11�d� show stick fig-
ures expressing the walking motion when such forces are
applied. Figures 11�e� and 11�f� indicate the time series of
the walking velocity z1 and the hip and knee joint angles on
the one side during the walks shown in Figs. 11�b� and 11�d�,
respectively. Initial-state coordination could therefore enable
the walking system to adapt to strong continuous forces.

The GVC system overcomes perturbations by forming the
leg posture at the BSP. That is, the strategy applies a load to
the hip and knee joints at the BSP. However, as described in
�1�, the model does not produce a torque amplitude in excess
of �h and �k at the hip and knee joints, respectively. The
parameters �h and �k were set to 100 Nm and 70 Nm, respec-
tively. The adaptive strategy could therefore be realized with
hip and knee joint torque amplitudes within 0.14 and 0.1
�torque �Nm�/weight �N��, since the assumed bodyweight is
70 kg�700 N. This torque amplitude is equal to that during
normal human walking as shown in biomechanical studies
�20�. Therefore, the adaptive strategy is considered to be ap-
propriate in terms of torque level. As an example, Fig. 10�e�
shows the time series of the active torque generated at the
hip and knee joints during the adaptive walking movement.

B. Adaptability to impairment

During walking, the foot develops the propulsive force
needed to move the body forward through interaction with
the ground. The ankle joint torque plays a decisive role in the
development of this propulsive force �26�. Restricting the
ankle joint torque level should therefore penalize walking
performance heavily. However, even when the ankle joint�s�
are rendered immobile through injury, humans can usually
walk.

We considered such a case, supposing that the torque
level of the ankle joint�s� �l and r in Appendix A� sud-
denly becomes zero during walking. It was confirmed that
during simple walking �without initial-state coordination by
z1� even the impairment of one ankle joint makes the walking
system fall, as shown in Fig. 12�a�. On the other hand, the
GVC system enables the system to overcome the impair-
ment. The solution orbit approaches a different quasiperiodic
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orbit from that before impairment. The model could continue
to walk under such a sudden impairment of a single ankle
joint. Figure 12�b� shows a stick figure representing a motion
of the GVC system when the left ankle joint is suddenly
impaired.

Even when the ankle joint is impaired, humans can begin
walking from a standing position and achieve stable walking.
The transition from a standing position to stable walking is
referred to here as the initiation process. Regarding the con-
dition of sudden impairment discussed above, the strategy
has already been demonstrated capable of overcoming it us-
ing model �1� where �h and �k were taken as constants in the
model, but �k was abruptly shifted to another constant value
in accordance with a change in the ankle torque levels l and
r �12�. We tested whether the strategy achieved the initia-
tion process under ankle joint impairment. Regarding the ini-
tiation process, the model is equivalent to �1� since �k is
fixed from t=0 to reflect the impairment. By investigating
the parameter settings, we found that the model cannot es-
tablish subsequent walking for any �in and �k. This indicates
that the strategy adopted in �12� cannot achieve the initiation
process.

On the other hand, the GVC system is capable of achiev-
ing the initiation process. Figures 12�c� and 12�d� show stick

figures representing the walking motion from the initiation
process to stable walking with the ankle joint impaired on
only one leg and on both legs, respectively. The initial-state
coordination by the global variable was thus shown to enable
the impaired system to achieve the initiation process.

VI. DISCUSSION

Taga �25,27� modeled a human walking system by using
the “global angular velocity” which indicates the angular ve-
locity of the vector from the body’s center of gravity to the
center of pressure due to the ground reaction force. This
variable may play a similar role to the global variable pre-
sented here. Taga’s model has demonstrated adaptability to
environmental and task conditions. Taga integrated it into the
entrainment from the body to the CPG and utilized it for the
stabilization of the mutual entrainment. In a sense, this re-
stricts the function of the global variable to the stabilization
of the basic gait pattern. The model responds to perturbations
by producing joint torques at an amplitude corresponding to
that of the global variable. This means that this global vari-
able has been dealt with at the same level as other variables
expressing the motion of the system components, such as
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joint motion and neuronal firing. In contrast, we have pro-
vided numerical proof that the instant velocity of hip position
�z1� is a global variable. In the GVC system, which induces
control of the leg posture near the neutral state �at the BSP�,
the global variable z1 is used only to control which basin the
system is attracted to. The GVC system responds to pertur-
bations by modulating the leg posture ��h and �k in �1��
within the torque level of normal walking.

Focused on trajectories of a walking system following a
Poincaré section, studies in robotics have developed methods
for recovering the original stable trajectory following pertur-
bations and demonstrated the reliability of the recoveries’
effectiveness using a stability analysis �28–30� and delayed

feedback control approach �10,31�. The GVC system is de-
signed so that the initial state is located somewhere inside
the particular attractor basin by encoding the attractor basins
near neutral states. Although bipedal walking models that are
adaptive to strong perturbations have been discussed in
�12,25,27–34�, an autonomous adaptive model which repro-
duces human walking adaptability to both physical and en-
vironmental perturbations has not been proposed.

From a mathematical viewpoint, a hierarchy is the struc-
ture according to which the low-dimensional dynamics of a
small number of variables can govern the dynamics of a
large number of degrees of freedom over a whole system. A
small set of variables and a collection of other variables are
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FIG. 11. �a� and �b� show stick figure for
simple walking simulation and a walking simula-
tion based on the GVC system, respectively,
when an external forward force of +100 N acts
on the hip continuously. The tall vertical line in-
dicates the time at which the perturbation begins.
�c� and �d� show a simple walking simulation and
a walking simulation based on the GVC system,
respectively, when an external backward force of
−40 N acts on the hip continuously. �e� and �f�
Motion of variables during walking movements
shown in �b� and �d�, respectively. The time se-
ries of z1 �solid line�, the angle of the left hip
joint, x3−x5 �gray line�, and the angle of the left
knee joint, x3−x4 �dashed line�, of the left leg are
indicated. � and � denote the angle of the hip
and knee joints, respectively, at the BSP. This in-
formation shows that the hip �gray line� and knee
joint angles �dashed line� at the BSP were modu-
lated according to the value of z1 �solid line�,
which led to successfully overcoming the
perturbation.
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referred to as the higher and lower levels, respectively. When
the fate of the solution orbit of the system is determined by a
small number of variables, and other variables are in turn
governed by them, the system can be considered to be hier-
archical.

In this paper, we define a global variable as dominant
directions in the dynamics of the system near neutral states.
Numerical experiments near neutral states revealed the fol-
lowing.

�I� The walking velocity z1 is a global variable and can
dominate other variables near neutral states.

�II� The posture at the BSP is the initial state, and it de-
termines which attractor basin the system belongs to.

These findings ensure that the dynamics of the system
with its large number of degrees of freedom can be governed
by the one-dimensional dynamics of the global variable z1
near the neutral states if the initial state is coordinated by this
global variable. The equations coordinating the initial state
by the global variable were constructed accordingly. The
walking system was thus constructed hierarchically and con-
sists of two levels including the global and other variables.

By using oscillator models, theoretical studies of human
locomotion �35,36� have indicated that the walking speed is
an important parameter in determining walking patterns.
Moreover, it has been shown in �35� that walking pattern
transitions dependent on the walking speed are biomechani-
cally appropriate with respect to energy cost. We note that in
this article the relationship between walking speed, energy
cost, and hierarchy structure among all the variables, includ-
ing the neural system, has not been clarified.

Regarding the hierarchy, we emphasize the following
point. The hierarchic structure proposed here is different
from that of a master-slave relationship such as the slaving
principle �19�, because in the GVC system the interaction
between the two levels is clearly active only when the sys-
tem draws near to neutral states. In other states of the system
such as stable walking states, the global variables or ele-
ments in hierarchically higher levels are not crucial for the
walking dynamics because �h and �k are not affected by the
global variables for zb�z1�zf. Indeed, in a stable walking
state, a walking motion trajectory generated by the system is
similar to a trajectory generated by simple walking in which
coordination functions based on a global variable are not
integrated �without the PC�. We have shown that such an
“instability-induced hierarchy” can yield flexibility.

APPENDIX A: THE EQUATIONS OF BODY
MOTION AND CPG

All variables and conventions correspond to those shown
in Fig. 2. By using the Newton-Euler method used in �4�, the
motion of the body can be written as follows:

P�x�ẍ = Q„x, ẋ,T�u,x, ẋ�,TBSP�u,x�,F… , �A1�

and therefore,

ẍ = �P�x��−1Q„x, ẋ,Tr�u,x, ẋ�,TBSP�u,x�,F… ,

where an overdot denotes the derivative with respect to t,

x = �x1,x2,x3,x4,x5,x6�T,

Q„x, ẋ,Tr�u�,TBSP�u,x�,F… = �q1,q2,q3,q4,q5,q6�T,

Tr�u,x, ẋ� = �Tr1,Tr2,Tr3,Tr4,Tr5,Tr6�T,

F = �F1,F2,F3,F4,F5,F6�T,

and the 6�6 real matrix P�x� is same as that in �12�,

q1 = �0.5m2 + m3�l1 sin�x3�ẋ3
2 + 0.5m3l2 sin�x4�ẋ4

2 + �0.5m4

+ m5�l3 sin�x5�ẋ5
2 + 0.5m5l4 sin�x6�ẋ6

2 + Fg1 + Fg3 + F1,

q2 = − �0.5m2 + m3�l1 cos�x3�ẋ3
2 − 0.5m3l2 cos�x4�ẋ4

2

− �0.5m4 + m5�l3 cos�x5�ẋ5
2 − 0.5m5l4 cos�x6�ẋ6

2

+ Fg1 + Fg2 − 
n=1

5

mng + F2,

q3 = 0.5m3l1l2 sin�x4 − x3�ẋ4
2 − �m2 + 2m3�0.5gl1 sin�x3�

+ Fg1l1 cos�x3� + Fg2l1 sin�x3� + Trp1 + Tr1

− Tr2 − Tr4 − TBSPl + F3,

q4 = 0.5m3l1l2 sin�x3 − x4�ẋ3
2 − 0.5m2gl2 sin�x4�

+ Fg1l2 cos�x4� + Fg2l2 sin�x4� + Trp2

+ Tr2 − Tr3 + TBSPl + F4,
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FIG. 12. Adaptability of the GVC system to impairment condi-
tions in the ankle joint�s�. �a� and �b� Stick figures representing
simple walking and the GVC system’s walking, respectively, for the
case when the torque acting at one ankle joint suddenly becomes 0
during walking. The vertical line indicates the timing at which the
change occurs. �c� and �d� Impairments applied from the onset of
walking; i.e., the torque level of the ankle joint�s� is 0 from the
beginning and throughout walking. �c� and �d� show stick figures
representing walking motion of the GVC system in the case that the
impairment condition is applied to one leg and both the legs, re-
spectively. Numerical simulation more than 100 s shows walking of
the GVC system with impairment�s�, i.e., in �b�, �c�, and �d�, to be
stable in the corresponding time interval.
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q5 = 0.5m5l3l4 sin�x6 − x5�ẋ6
2 − 0.5�m4 + 2m5�gl3 sin�x5�

+ Fg3l3 cos�x5� + Fg4l3 sin�x5� + Trp3 + Tr4

− Tr5 − Tr1 − TBSPr + F5,

q6 = 0.5m5l3l4 sin�x5 − x6�ẋ5
2 − 0.5m4gl4 sin�x6�

+ Fg3l4 cos�x6� + Fg4I4 sin�x6� + Trp4 + Tr5

− Tr6 + TBSPr + F6.

Fgi �i=1, . . . ,4� are the horizontal and vertical forces on the
ankles �see detail in �12��.

Passively generated torques at each joint are given by

Trp1 = krf�x4 − x3� − brf�x4 − x3� − b0�ẋ3 − ẋ5� − b0�ẋ3 − ẋ4� ,

Trp2 = − krf�x4 − x3� + brf�x4 − x3� − b0�ẋ4 − ẋ3� − b0ẋ4,

Trp3 = krf�x6 − x5� − brf�x6 − x5� − b0�ẋ5 − ẋ3� − b0�ẋ5 − ẋ6� ,

Trp4 = − krf�x6 − x5� + brf�x6 − x5� − b0�ẋ6 − ẋ5� − b0ẋ6,

where k and b are positive constants.
Actively generated torques at each joint are given by

Tr1 = p1f�u1� − p2f�u2� + TBSPlh − TBSPrh,

Tr2 = p3f�u2� − p4f�u4� + TBSPlk + Trl,

Tr3 = l�p5f�u5� − p6f�u6��g�− yl� − TBSPlk − Trl,

Tr4 = p1f�u7� − p2f�u8� − TBSPlh + TBSPrh,

Tr5 = p3f�u9� − p4f�u10� + TBSPrk + Trr,

Tr6 = r�p5f�u11� − p6f�u12��g�− yr� − TBSPrk − Trr,

Trl = g�u1��− p7�f�x3 − x4 − xk��2 − p8�ẋ3 − ẋ4�� ,

Trr = g�u7��− p7�f�x5 − x6 − xk��2 − p8�ẋ5 − ẋ6�� ,

where l and r are parameters expressing the ankle joint
torque in the left and right legs, respectively. The values of
l and r are set to 0 and 1 for the normal and impaired
situations, respectively. Trl and Trr are voluntary control
torques which roughly restrict the maximum flection angle of
the left and right knee joints to a positive constant xk rad
during each swing phase. The other equations and param-
eters used in the model presented here and those in the pre-
vious model �12� are identical.

The neural system is represented by the following differ-
ential equations �37�:

�iu̇i�t� = ui�t� − vi�t� − ui�t�3/3 + 
j=1

16

wijf„uj�t�… + u0 + Ei„x�t�… ,

�i�v̇i�t� = ui�t� + a − bvi�t� ,

E1 = E8 = − E2 = − E7 = f�− x3� − f�− x5� ,

Ei = 0 �otherwise� ,

f�ui� = max�0,ui� �i = 1, . . . ,16� ,

where ui is the potential of the ith neuron and vi is respon-
sible for the accommodation and refractoriness of the ith
neuron.

APPENDIX B: SIMULATION PARAMETERS

1. Body

The parameters for the body are

m1 = 48.0 kg, m2 = m4 = 7.0 kg, m3 = m5 = 4.0 kg,

l1 = l3 = 0.4 m, l2 = l4 = 0.45 m,

Ii = mi+1li
2/12 kg m2 �i = 1,2,3,4� ,

kg = 30000.0 kg/s2, kr = 2000.0 kg/s2,

bg = 3000.0 kg/s, br = 200.0 kg/s2, b0 = 1.0 kg/s,

p1 = p2 = p4 = 24.0 kg rad s−2 mV−1,

p3 = 31.2 kg rad s−2 mV−1,

p5 = 20.0 kg rad s−2 mV−1,

p6 = 0.0 kg rad s−2 mV−1,

p7 = 400.0 kg rad s−2 mV−1,

p8 = 40.0 kg rad s−2 mV−1,

�h = �k = 50.0 kg rad s−2 mV−1,

ph1 = pk1 = 500.0 kg rad s−2 mV−1,

ph2 = pk2 = 50.0 kg rad s−2 mV−1,

�h = 100.0 kg rad2 s−2, �k = 70.0 kg rad2 s−2,

xk = 0.2	 rad, g = 9.8 ms−2,

�h = 0.13	 rad, �k = 0.01 	 rad.

2. Neural system (central pattern generator
and posture controller)

The paramters for the neural system are

�4 = �10 = �13 = �14 = 1/50,

�i = 1/30 �otherwise� ,
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�4� = �10� = �13� = �14� = 20/3,

�i = 10/3 �otherwise� ,

u0 = 0.3, a = 0.7, b = 0.8,

w1 5 = w2 6 = w2 4 = w4 3 = − 1.0,

w5 6 = w6 5 = w1 7 = w7 1 = − 1.0,

w7 12 = w8 12 = w8 10 = w10 9 = − 1.0,

w11 12 = w12 11 = w2 8 = w8 2 = − 1.0,

w4 p1 = w10 p2 = − 1.0,

w1 2 = w2 1 = w7 8 = w8 7 = − 2.0,

w1 3 = w2 3 = w7 9 = w8 9 = 1.0,

wij = 0.0 �otherwise� .

3. Initial conditions

The parameters for the initial conditions are

x1 = 0.0 m, x2 = �l1 + l2�cos �in m,

x3 = x4 = x5 = x6 = �in rad,

ẋi = 0 �i = 1, . . . ,6� ,

ui = − 0.199408 mV for i = 1,8,13,

ui = − 1.199408 mV �otherwise� ,

vi = − 0.624260 �i = 1, . . . ,16� .
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